人类对象相互作用(HOI)检测的任务目标是人类与环境相互作用的细粒度视觉解析,从而实现了广泛的应用。先前的工作证明了有效的体系结构设计和相关线索的集成的好处,以进行更准确的HOI检测。但是,现有方法的设计适当的预训练策略的设计仍未得到充实。为了解决这一差距,我们提出了关系语言图像预训练(RLIP),这是一种利用实体和关系描述的对比预训练的策略。为了有效利用此类预训练,我们做出了三个技术贡献:(1)一种新的并行实体检测和顺序关系推理(Parse)体系结构,可在整体优化的预训练期间使用实体和关系描述; (2)合成数据生成框架,标签序列扩展,扩展了每个Minibatch中可用的语言数据的规模; (3)解释歧义,关系质量标签和关系伪标签的机制,以减轻训练数据中模棱两可/嘈杂样本的影响。通过广泛的实验,我们证明了这些贡献的好处,共同称为rlip-parse,以改善零射击,很少射击和微调的HOI检测性能以及从噪音注释中学习的鲁棒性。代码将在\ url {https://github.com/jacobyuan7/rlip}上找到。
translated by 谷歌翻译
激光雷达语义分割的当前方法对于现实世界应用,例如自动驾驶,因为它是封闭式和静态的。封闭设置的假设使网络只能输出训练的类的标签,即使是从未见过的对象,而静态网络也无法根据所看到的知识来更新其知识库。因此,在这项工作中,我们提出了激光点云的开放世界语义细分任务,其目的是1)使用开放式语义分段确定旧类和新颖的类,以及2)逐渐将新颖对象纳入现有知识库中使用增量学习而不会忘记旧课程。为此,我们提出了一个冗余分类器(真实)框架,以为开放式语义细分和增量学习问题提供一般体系结构。实验结果表明,真实可以同时在Semantickitti和Nuscenes数据集中的开放式语义分割任务中实现最新性能,并在增量学习过程中减轻灾难性遗忘问题,并减少较大的利润率。
translated by 谷歌翻译
空间卷积广泛用于许多深度视频模型。它基本上假设了时空不变性,即,使用不同帧中的每个位置的共享权重。这项工作提出了用于视频理解的时间 - 自适应卷积(Tadaconv),这表明沿着时间维度的自适应权重校准是促进在视频中建模复杂的时间动态的有效方法。具体而言,Tadaconv根据其本地和全局时间上下文校准每个帧的卷积权重,使空间卷积具有时间建模能力。与先前的时间建模操作相比,Tadaconv在通过卷积内核上运行而不是特征,其维度是比空间分辨率小的数量级更有效。此外,内核校准还具有增加的模型容量。通过用Tadaconv替换Reset中的空间互联网来构建坦达2D网络,这与多个视频动作识别和定位基准测试的最先进方法相比,导致PAR或更好的性能。我们还表明,作为可忽略的计算开销的容易插入操作,Tadaconv可以有效地改善许多具有令人信服的边距的现有视频模型。 HTTPS://github.com/alibaba-mmai-research/pytorch-video -Undersing提供代码和模型。
translated by 谷歌翻译
对比学习的核心思想是区分不同的实例,并从相同实例中强制不同的视图以共享相同的表示。为了避免琐碎的解决方案,增强在生成不同视图中起重要作用,其中显示了随机裁剪来对模型来学习广义和鲁棒的表示。常用的随机作物操作保持沿着训练过程不变的两个视图之间的分布。在这项工作中,我们表明,自适应地控制沿着训练过程的两个增强视图之间的视差增强了学习的表示的质量。具体而言,我们提出了一种参数立方裁剪操作,用于视频对比度学习,其通过可分辨率的3D仿射变换自动批量3D立方。参数使用对抗目标与视频骨干同时培训,并从数据中学习最佳裁剪策略。可视化表明,参数自适应地控制了两个增强视图之间的中心距离和IOU,并且沿着训练过程的差异中的学习变化是有利于学习强烈的表示。广泛的消融研究证明了所提出的参数对多个对比学习框架和视频骨干的有效性。可以使用代码和模型。
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
Neural models with an encoder-decoder framework provide a feasible solution to Question Generation (QG). However, after analyzing the model vocabulary we find that current models (both RNN-based and pre-training based) have more than 23\% inflected forms. As a result, the encoder will generate separate embeddings for the inflected forms, leading to a waste of training data and parameters. Even worse, in decoding these models are vulnerable to irrelevant noise and they suffer from high computational costs. In this paper, we propose an approach to enhance the performance of QG by fusing word transformation. Firstly, we identify the inflected forms of words from the input of encoder, and replace them with the root words, letting the encoder pay more attention to the repetitive root words. Secondly, we propose to adapt QG as a combination of the following actions in the encode-decoder framework: generating a question word, copying a word from the source sequence or generating a word transformation type. Such extension can greatly decrease the size of predicted words in the decoder as well as noise. We apply our approach to a typical RNN-based model and \textsc{UniLM} to get the improved versions. We conduct extensive experiments on SQuAD and MS MARCO datasets. The experimental results show that the improved versions can significantly outperform the corresponding baselines in terms of BLEU, ROUGE-L and METEOR as well as time cost.
translated by 谷歌翻译
In this paper, we develop an efficient multi-scale network to predict action classes in partial videos in an end-to-end manner. Unlike most existing methods with offline feature generation, our method directly takes frames as input and further models motion evolution on two different temporal scales.Therefore, we solve the complexity problems of the two stages of modeling and the problem of insufficient temporal and spatial information of a single scale. Our proposed End-to-End MultiScale Network (E2EMSNet) is composed of two scales which are named segment scale and observed global scale. The segment scale leverages temporal difference over consecutive frames for finer motion patterns by supplying 2D convolutions. For observed global scale, a Long Short-Term Memory (LSTM) is incorporated to capture motion features of observed frames. Our model provides a simple and efficient modeling framework with a small computational cost. Our E2EMSNet is evaluated on three challenging datasets: BIT, HMDB51, and UCF101. The extensive experiments demonstrate the effectiveness of our method for action prediction in videos.
translated by 谷歌翻译